SitNews - Stories in the News - Ketchikan, Alaska

 

Study measures methane release from Arctic permafrost

By JEFF RICHARDSON

 

August 25, 2016
Thursday PM


(SitNews) - A University of Alaska Fairbanks-led research project has provided the first modern evidence of a landscape-level permafrost carbon feedback, in which thawing permafrost releases ancient carbon as climate-warming greenhouse gases.

jpg Study measures methane release from Arctic permafrost

Research Associate Professor Katey Walter Anthony inspects ignited methane gas shooting from a hole in the ice on the surface of a pond on the University of Alaska Fairbanks campus. The naturally occurring phenomenon is enhanced by thawing permafrost and increased plant decay.
UAF photo by Todd Paris

The study was published Monday in the journal Nature Geoscience.

The project, led by UAF researcher Katey Walter Anthony, studied lakes in Alaska, Canada, Sweden and Siberia where permafrost thaw surrounding lakes led to lake shoreline expansion during the past 60 years. Using historical aerial photo analysis, soil and methane sampling, and radiocarbon dating, the project quantified for the first time the strength of the present-day permafrost carbon feedback to climate warming. Although a large permafrost carbon emission is expected to occur imminently, the results of this study show nearly no sign that it has begun.

The study used radiocarbon dating to determine the age of methane emitted from expansion zones, where Arctic lakes have recently grown to consume and thaw terrestrial permafrost. The age of that methane mirrors that of the ancient permafrost soil thawing alongside and beneath the lakes, and provides the largest known dataset of radiocarbon dated methane emissions.

The data is important for climate change models, since the emissions released by thawing permafrost could significantly affect levels of greenhouse gases in the atmosphere. Old carbon isn’t part of that equation if it remains trapped in frozen soil, but it’s released as methane and carbon dioxide when permafrost soils thaw and decompose.

Walter Anthony said the billions of tons of carbon stored in permafrost are about twice the amount that is currently in the atmosphere. Many researchers are concerned that if old carbon begins to cycle, it could create a feedback loop — its emissions contribute to warming, which again contributes to the thawing of more permafrost.

“If you open the freezer door, you thaw permafrost soil that’s been frozen for a long time, and the organic matter in it is decomposed by microbes,” Walter Anthony said.


jpg University of Alaska Fairbanks student researchers Dragos Vas and Sudipta Sarkar measure methane bubbles rising from an Interior Alaska lake.

University of Alaska Fairbanks student researchers Dragos Vas and Sudipta Sarkar measure methane bubbles rising from an Interior Alaska lake.
Photo by Katey Walter Anthony


Grosse, a co-author of the study from the German Alfred Wegener Institute, said climate change researchers are increasingly concerned about how fast that thaw and release of carbon may happen, and whether the process has already accelerated in recent years.

The new study found the rate of old carbon released during the past 60 years to be relatively small. Model projections conducted by other studies expect much higher carbon release rates — from 100 to 900 times greater — for its release during the upcoming 90 years. This suggests that current rates are still well below what may lay ahead in the future of a warmer Arctic.

Determining the rate of old carbon release from permafrost had been a challenge for researchers, since vegetation that grows in thawed permafrost in forest and tundra systems releases its own modern organic carbon into soils, which readily decomposes and dilutes the “old carbon” signal from thawing permafrost soils. The research team led by Walter Anthony focused on methane emissions from lakes, where permafrost thaws much deeper than on land. Methane that forms in deeply thawed soils beneath lakes generates bubbles that rapidly rise to escape from lakes without mixing with younger surface carbon.

UAF researchers Peter Anthony and Chien-Lu Ping also contributed to the study. Other researchers on the project included Ronald Dannen, Alaska Department of Natural Resources; Thomas Schneider von Deimling, Max Planck Institute for Meteorology; and Jeffrey P. Chanton, Florida State University.

 

 

 

This article is provided as a public service by the University of Alaska Fairbanks.
Jeff Richardson [jarichardson6@alaska.edu] is a public information officer with the University of Alaska Fairbanks.

 

 

Representations of fact and opinions in comments posted are solely those of the individual posters and do not represent the opinions of Sitnews.

 



Submit A Letter to SitNews

Contact the Editor

SitNews ©2016
Stories In The News
Ketchikan, Alaska

 Articles & photographs that appear in SitNews may be protected by copyright and may not be reprinted without written permission from and payment of any required fees to the proper sources.

E-mail your news & photos to editor@sitnews.us

Photographers choosing to submit photographs for publication to SitNews are in doing so granting their permission for publication and for archiving. SitNews does not sell photographs. All requests for purchasing a photograph will be emailed to the photographer.